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Abstract
By a new Monte Carlo algorithm, we evaluate the sidedness probability pn

of a planar Poisson–Voronoi cell in the range 3 � n � 1600. The algorithm
is developed on the basis of earlier theoretical work; it exploits, in particular,
the known asymptotic behaviour of pn as n → ∞. Our pn values all have
between four and six significant digits. Accurate n dependent averages, second
moments and variances are obtained for the cell area and the cell perimeter.
The numerical large-n behaviour of these quantities is analysed in terms of an
asymptotic power series in n−1. Snapshots are shown of typical occurrences of
extremely rare events, implicating cells of up to n = 1600 sides embedded in an
ordinary Poisson–Voronoi diagram. We reveal and discuss the characteristic
features of such many-sided cells and their immediate environment. Their
relevance for observable properties is stressed.

PACS numbers: 02.50.Ey, 02.50.Ng, 02.70.Uu, 87.18.Hf, 87.18.Bb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A Voronoi diagram partitions space into convex cells constructed around a set of point-like
‘seeds’ or ‘particles’, in such a way that each point of space is in the cell of the particle to
which it is closest. When the particles are distributed randomly and uniformly, the partitioning
is called a Poisson–Voronoi diagram or a random Voronoi froth.

Voronoi cells play a role in science and engineering and are also of interest to
mathematicians. Applications include cellular structures that either arise spontaneously in
nature (e.g. in biological cellular structures, in soap froths or in granular materials) or are
employed as a tool of analysis (e.g. to identify lattice defects in simulations of melting crystals).
Many references are given in [1] and in the encyclopaedic monograph on tessellations by Okabe
et al [2].
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The simplest Voronoi diagrams are of the Poisson type. It is important, therefore, that the
properties of Poisson–Voronoi diagrams be understood as well as possible. Here we pursue,
by means of a new Monte Carlo method, earlier investigations [1, 3, 4] on such diagrams in
the Euclidean plane R

2.
The most prominent statistical property of the planar Poisson–Voronoi cell is its

‘sidedness’. We denote by pn the probability that a cell is n-sided, for arbitrary integer
n � 3. Other properties of interest include the average area of an n-sided cell and the average
length of its perimeter, the statistics of the angles at the vertices and correlations between
neighbouring cells. All these properties may be expressed as multiple integrals on the particle
positions [2, 5], but only a few of them can be calculated explicitly. In particular, no simple
closed form expression for pn is known. An exact relation derived from Euler’s theorem
ensures that the average sidedness n ≡ ∑∞

n=3 npn is equal to n = 6.
It is known numerically that pn peaks at n = 6 and falls off rapidly for large n. Hayen and

Quine [6] have numerically evaluated the integral for p3 with high accuracy. For n = 4, 5, . . .

the values of pn stem only from Monte Carlo work. The most accurate reported values of pn

are due to Calka [7] for 4 � n � 7 and to Brakke [8] for 8 � n � 16. One has p16 ≈ 10−8, and
the largest sidedness observed in simulations by conventional algorithms is around n = 16.
Drouffe and Itzykson [9, 10], as part of an effort to construct field theories on random lattices,
developed an improved algorithm by which they estimated pn for n up to 50. Their results,
however, have error bars that for n � 30 become of the same order as pn themselves. Hence,
simulating many-sided Voronoi cells has remained a challenge.

The interest of investigating Voronoi cells for asymptotically large n was stressed by Le
Caër and Delannay [11]. Analytic knowledge of the large-n behaviour of pn, apart from the
insight that it provides, also constrains the laws that describe the finite n behaviour as observed
in experiments and simulations. An example of this interplay between the regimes of finite
and of asymptotic n is the theoretical explanation given in [4] of the failure of Aboav’s law
[12] for Poisson–Voronoi diagrams.

The analytic study of pn in the limit n → ∞ was taken up in [1, 3]. It was shown there,
among many other things, that asymptotically

pn � Cp(0)
n , n → ∞, (1.1)

with C = 0.344 347 . . . 2 and

p(0)
n = 1

4π2

(8π2)n

(2n)!
. (1.2)

In the present work, we exploit this asymptotic knowledge. Going beyond equation (1.1) we
write an equality that is exact for all n rather than merely asymptotic, namely

pn = Cnp
(0)
n , (1.3)

whence necessarily limn→∞ Cn = C. We focus on Cn and show that it can be expressed as an
average

Cn = 〈� e−V〉, (1.4)

where V is a known expression in the angular variables that describe the n-sided cell, and �

is an indicator (i.e. equal to 0 or to 1) imposing a geometric constraint on the set of angles.
We will determine the prefactor Cn in (1.3) by Monte Carlo evaluation of the right-hand
side of equation (1.4) for finite n = 3, 4, . . . . The Monte Carlo algorithm is new for this
problem. Whereas all previously used methods become rapidly inefficient with increasing n,

2 Its analytic expression is C = ∏∞
q=1(1 − q−2 + 4q−4)−1.
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the performance of the algorithm presented here is, very roughly, independent of n. This makes
it possible, in particular, to explore the structure of Voronoi cells in the hitherto inaccessible
large-n regime.

The remaining sections of this paper are as follows. In section 2 the algorithm is described.
In section 3 results are presented and discussed for the sidedness probability pn as well as for
the averages and second moments of the cell perimeter and cell area. The asymptotic large-n
behaviour of these quantities is analysed numerically. In section 4 we present and discuss
characteristic pictures of many-sided Voronoi cells in an environment of ordinary cells. In
section 5 we summarize our results.

The algorithm requires the explicit expressions for V and � in equation (1.4). Finding
these is a matter of considerable technical complexity; it is based on results of [1] and is the
subject of appendices A and B.

2. Monte Carlo algorithm

2.1. Context

Monte Carlo methods for generating Voronoi cells of Poisson distributed particles are discussed
by Okabe et al [2]. One class of methods simply determines pn as the relative frequency of
occurrence of n-sided cells. But since pn decreases to zero faster than exponentially for
n � 12, the statistical precision goes down accordingly. With such methods, it is hardly
possible to accumulate sufficient statistics for even single-digit precision as soon as n ≈ 16.

Another class of methods generates cells for a value of n fixed in advance. The first
to have done so seem to have been Drouffe and Itzykson [9]. The method employed by
Calka [7] is also in this class. These methods face the problem of attrition: a Monte Carlo-
generated geometrical object, in order to represent a valid n-sided cell, must satisfy certain
geometrical constraints. The probability that an attempted generation satisfies the constraints
again decreases rapidly with growing n.

The present algorithm, which also fixes n in advance, completely solves the problem of
attrition: the geometric constraints are satisfied with a probability that tends to unity when
n → ∞. In order to arrange things this way, a certain amount of rather technical rewriting
of the initial problem is necessary. We have confined this rewriting to the appendices. If one
accepts its results, the method is easy to apply.

2.2. Angular variables

An n-sided Voronoi cell around a particle in the origin, as shown in figure 1, is specified
completely by its n vertex vectors S1, S2, . . . , Sn. It may be specified alternatively by its n
mid-point vectors, i.e. the projections R1, R2, . . . , Rn of the origin onto the sides. The explicit
expression [1, 7, 9, 13] for pn as a multiple integral on Rm is given in appendix A. It has
not, however, been possible to evaluate this integral analytically. By choosing other sets of
variables of integration one may recast the original integral in numerous different forms, none
of which is simple. For our purpose, it is essential to use the angular variables that we will
define now.

Let �m and �m be the polar angles of Rm and Sm, respectively. Other angles relevant for
this problem are defined in figure 1. The quantities ηm = �m+1 − �m are the angles between
two consecutive vertex vectors and the quantities ξm = �m − �m−1 are those between two
consecutive mid-point vectors; n-periodicity in the index m is understood. For fixed sets
ξ = {ξm} and η = {ηm}, one may still jointly rotate the set of vertex vectors with respect to
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Figure 1. Heavy line: the perimeter of the Voronoi cell around a particle in the origin O. The
dashed and dotted lines connect the origin to the midpoints Rm and vertices Sm, respectively.
The particles of the neighbouring cells are located at 2R1, . . . , 2Rn. The right angles have been
marked. The figure defines the sets of angles ξm, ηm, βm and γm.

the set of mid-point vectors: this modifies only the relative angles βm and γm between the two
sets. We may select any one of these relative angles and call it ‘the’ angle of rotation, since it
will determine all others; we will select β1. When for a generic β1 we draw the cell boundary
by clockwise constructing its successive segments, then after a turn of 2π it appears not close
onto itself but to spiral. A ‘no-spiral condition’ must therefore determine the appropriate value
of the angle of rotation β1 = β∗(ξ, η) for which the cell boundary closes. This condition reads
[1]

G(ξ, η;β∗) = 0, (2.1)

where

e2πG =
n∏

m=1

cos γm

cos βm

. (2.2)

One may note that equation (2.2) involves βm and γm that are themselves determined by the
solution β1 = β∗ of (2.1). For an arbitrary pair (ξ, η), there need not exist a solution to
equation (2.1). In appendix B we show that it has a solution, which moreover is unique, if and
only if

max
1�m�n

[
m−1∑
	=1

(ξ	 − η	) + ξm

]
− min

1�m�n

[
m−1∑
	=1

(ξ	 − η	)

]
< π, (2.3)

which is a criterion expressed entirely in terms of the supposedly given sets ξ and η.
After these preliminaries we return to (1.4). The symbol � in that expression denotes

the indicator function of the domain in (ξ, η) space where (2.3) is satisfied. Finally, the
‘interaction’ V in (1.4) is given explicitly in terms of the angular variables in appendix A
through a sequence of definitions, equations (A.10) and (A.5)–(A.8), that we will not display
here.

2.3. Algorithm for determining pn

The sidedness probability pn is given by equations (1.2)–(1.4). We determine it numerically
by evaluating 〈� e−V〉 as follows. We fix the sidedness n, after which the simulation proceeds
according to the five steps given below.
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(i) We draw n − 1 random numbers uniformly distributed on [0, 1] and order them. After
multiplication by 2π , this gives3 0 < �̄1 < �̄2 < · · · < �̄n−1 < 2π . We set �̄n = 2π

and choose
ηm = �̄m+1 − �̄m, m = 1, . . . , n − 1,

ηn = �̄1.
(2.4)

We next draw 2n−1 random numbers, order them and discard those of odd rank so that only
n − 1 are left. After multiplication by 2π this gives 0 < �̄1 < �̄2 < · · · < �̄n−1 < 2π .
We set �̄0 = 0 and choose

ξm = �̄m − �̄m−1, m = 1, . . . , n − 1,

ξn = 2π − �̄n−1.
(2.5)

(ii) We check if the pair of sets (ξ, η) thus obtained satisfies equation (2.3). If so, then we
know that there exists β∗(ξ, η) which may be determined from equation (2.1); hence
� = 1 and we proceed with (iii). If not, then it is impossible to satisfy equation (2.1),
we have � = 0, and the attempt to generate an n-sided cell fails. We increase the attempt
counter by one unit and return to (i).

(iii) We solve β∗(ξ, η) from equation (2.1) by a numerical iteration procedure which also
yields the derivative G′(ξ, η;β∗) needed in the next step.

(iv) We calculate the weight exp(−V) according to equations (A.10) and (A.5)–(A.8) of
appendix A and add it to the accumulated weight. We increase the attempt counter by
one unit and return to (i).

(v) In the end the total accumulated weight is divided by the total number of attempts,
including those that failed. The result is an estimate for pn.

We remark that the successive cells generated by this procedure are all statistically
independent.

2.4. Algorithm for n dependent averages

The simulation method described above allows us to study arbitrary cell properties
F(R1, . . . , Rn). Writing 〈F 〉n for the average of F subject to a given sidedness n, we have

〈F 〉n = 〈IF � e−V〉
〈� e−V〉 . (2.6)

Here the numerator, which generalizes (1.4), has an insertion IF that derives from F by a
radial integration. We recall that the average 〈· · ·〉, defined in (A.15), applies to quantities that
depend exclusively on the angular variables. To find IF from F, we set Rav = n−1 ∑n

m=1 Rm.
We may then express the ratios ρm = Rm/Rav entirely in terms of the angular variables (see
appendix A). Then, if F is of dimension dF , it may be factorized into a radial and an angular
part according to

F(R1, . . . , Rn) = (
R2

av

/
4λ

)dF /2
F̂ (ξ, η), (2.7)

where we show explicitly the areal particle density λ which had heretofore been scaled away4.
When (2.7) is integrated over the radial scale Rav, an extra factor appears as compared to the
same operation for pn and we find

IF = �
(
n + 1

2dF

)
�(n)

W−dF /2F̂ , (2.8)

3 The angles �̄m are equal to the angles �m of figure 1 up to a common additive constant which drops out of equation
(2.4). An analogous remark applies to �̄m.
4 A factor 4λ instead of λ appears because the particle positions were defined as 2Rm instead of Rm.
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where � denotes the gamma function and where we abbreviated

W = 4λπ(1 + n−1V ) (2.9)

with V given by (A.8).
We will limit ourselves to considering the first and second moments of two quantities that

are frequently encountered in applications and that have therefore been the subject of much
earlier work, namely the cell perimeter P and the cell area A. These are explicitly given by

P = Rav(4λ)−1/2F̂1, A = R2
av(4λ)−1F̂2, (2.10)

with the angular factors

F̂k = 1

k

n∑
m=1

ρk
m(tan γm + tan βm+1), k = 1, 2. (2.11)

Setting successively F = P,P 2, A,A2 we find that the corresponding insertions in the
numerator of equation (2.6) are

IP = [
�

(
n + 1

2

)/
�(n)

]
W−1/2F̂1,

IP 2 = nW−1F̂ 2
1 ,

IA = 1
2nW−1F̂2,

IA2 = 1
4n(n + 1)W−2F̂ 2

2 .

(2.12)

The simulation steps for finding the numerator of equation (2.6) are the same as for pn except
that (iv) and (v) are respectively replaced with (iv′) and (v′) given below.

(iv′) We multiply the insertion IF of the quantity F of interest by the weight exp(−V) and
accumulate the value thus obtained.

(v′) In the end the total accumulated value is divided by the total number of attempts
and by the estimate obtained for pn. This provides an estimate for 〈F 〉n. The numerical data
shown will all be for λ = 1.

3. Results and discussion

3.1. The distribution of V and the indicator �

Before discussing our results for the sidedness probability pn, we briefly consider the quantities
V and � that via (1.3) and (1.4) enter into their definition. Let P(V) denote the probability
distribution of V and φn ≡ 〈�〉 the probability for an attempted cell generation to be successful.
In terms of these, we may rewrite (1.4) as

Cn = φn

∫
dVP(V) e−V, (3.1)

which exhibits the important intermediate role of P(V) and φn.
In order to show what P(V) looks like, we have plotted its logarithm in figure 2 for

n = 50, 100, 200 and 400. The curves clearly demonstrate that for n → ∞ there is
convergence to a limit. For V → ±∞ the limit distribution appears to decay exponentially,
P(V) ∼ exp(−κ±|V|), but with very different decay constants: we obtain κ+ = 0.185 ±
0.005 from a fit in the range 3 � V � 30 followed by extrapolation to n = ∞, and
κ− = 2.47 ± 0.02 from a fit in the range −3 � V � −1.5. This large V behaviour has not yet
been explained theoretically.
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Figure 2. Logarithm of the probability distribution P(V) of V (see equation (3.1)) for four different
values of n, showing convergence to a limit distribution for n = ∞.

The � function in (1.4) imposes constraint (2.3) and is at the origin of the failed
generation attempts. Whereas these do not contribute to pn in step (iv) of the algorithm above,
equation (3.1) shows that via 〈�〉 = φn they do enter into the determination of its normalization.
In the last column of table 1 we list the fractions φn of successful attempts as determined from
the simulation. Although φn is equal only to φ3 = 0.058 for n = 3, it turns out to rise rapidly
with n, is already as high as φ10 = 0.8 for n = 10, and tends to unity for n → ∞. That is,
attrition disappears in the large-n limit.

This brings out the two key steps that are responsible for the success of the present
algorithm: (i) the limit distribution of P(V) has become n independent since we extracted
from the initial expression for pn the appropriate n dependent prefactor p(0)

n given in (1.2) and
(ii) attrition disappears for large n because of our choice of the angles (ξ, η) as the variables
of integration.

3.2. Sidedness probability pn

In table 1 we present the results for the sidedness probability pn for n in the range between
n = 3 and n = 1600. They are based on a number Nn of generation attempts given in the
fourth column of that table.

The second column of table 1 shows the best results for pn found in the literature for each
value of n. The p3 value was obtained by numerical integration; the other pn are Monte Carlo
results. For p4, . . . , p7 the statistical error is in the last decimal; for higher n the standard
deviations are indicated.

Our own results for pn, given in the third column of table 1, are accurate up to absolute
errors of order less than 10−5. Standard deviations were calculated by subdividing the data
into 20 or more groups and considering the dispersion of the group averages. We will now
discuss these results as a function of n.

Case n = 3. The probability p3 for a cell to be three-sided is the only one that has been
evaluated by numerical integration. This was done by Hayen and Quine [6], who reduced the
original integral to a four-dimensional one. They present a 12-digit result of which the second
column of table 1 shows only the first seven significant decimals. For n = 3 we performed
an especially long run with the purpose of testing our Monte Carlo method and checking the
result of [6]. As shown in table 1, our method reproduces six significant digits of Hayen and
Quine’s result and leaves their value within our error bars.
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Table 1. The sidedness probability pn. Second column: literature data taken from Hayen and
Quine [6] for p3; from Calka [7] for p4, . . . , p7; from Brakke [8] for p8, . . . , p15 and from Drouffe
and Itzykson [9] for pn with n � 16. Third column: pn and its standard deviation calculated by
the Monte Carlo method of this work. Fourth column: number Nn of cell generation attempts.
Fifth column: fraction φn of successful attempts.

Literature [6–9] This work

n pn pn Nn φn

3 1.124 001 . . . × 10−2 (1.124 000 ± 0.000 021) × 10−2 1.2 × 1010 0.0580

4 1.068 38 × 10−1 (1.068 454 ± 0.000 025) × 10−1 2 × 109 0.1730

5 2.5946 × 10−1 (2.594 44 ± 0.000 07) × 10−1 1.6 × 109 0.3077

6 2.9473 × 10−1 (2.947 23 ± 0.000 09) × 10−1 2 × 109 0.4391

7 1.9877 × 10−1 (1.987 68 ± 0.000 07) × 10−1 4 × 108 0.5564

8 (9.0116 ± 0.0020) × 10−2 (9.0131 ± 0.0006) × 10−2 108 0.6554

9 (2.9644 ± 0.0012) × 10−2 (2.9652 ± 0.0002) × 10−2 8 × 107 0.7361

10 (7.4471 ± 0.0059) × 10−3 (7.4487 ± 0.0006) × 10−3 8 × 107 0.8002

11 (1.4796 ± 0.0026) × 10−3 (1.4818 ± 0.0002) × 10−3 6 × 107 0.8501

12 (2.409 ± 0.011) × 10−4 (2.4000 ± 0.0002) × 10−4 6 × 107 0.8884

13 (3.18 ± 0.04) × 10−5 (3.2324 ± 0.0003) × 10−5 6 × 107 0.9175

14 (3.60 ± 0.13) × 10−6 (3.6835 ± 0.0004) × 10−6 4 × 107 0.9393

15 (3.7 ± 0.4) × 10−7 (3.6017 ± 0.0004) × 10−7 4 × 107 0.9556

16 (2.3 ± 0.3) × 10−8 (3.0574 ± 0.0004) × 10−8 4 × 107 0.9677

17 (2.2762 ± 0.0002) × 10−9 4 × 107 0.9765

18 (1.3 ± 0.5) × 10−10 (1.4989 ± 0.0002) × 10−10 4 × 107 0.9830

19 (8.7983 ± 0.0013) × 10−12 4 × 107 0.9878

20 (1.5 ± 0.8) × 10−13 (4.6314 ± 0.0004) × 10−13 8 × 107 0.9912

21 (2.1994 ± 0.0004) × 10−14 2 × 107 0.9937

22 (9.4835 ± 0.0017) × 10−16 2 × 107 0.9955

23 (3.7227 ± 0.0005) × 10−17 2 × 107 0.9968

24 (1.3379 ± 0.0003) × 10−18 2 × 107 0.9977

25 (9.6 ± 5.9) × 10−21 (4.4184 ± 0.0004) × 10−20 4 × 107 0.9984

30 (1.3 ± 1.1) × 10−29 (5.4595 ± 0.0005) × 10−28 4 × 107 0.9997

40 2.4 × 10−50 (6.7349 ± 0.0006) × 10−46 8 × 107 1.0000

50 1.5 × 10−75 (5.223 ± 0.001) × 10−66 1.6 × 107 1.0000

60 (7.192 ± 0.002) × 10−88 1.2 × 107 1.0000

70 (3.4805 ± 0.0004) × 10−111 3 × 107 1.0000

80 (9.598 ± 0.002) × 10−136 107 1.0000

90 (2.1616 ± 0.0005) × 10−161 0.8 × 107 1.0000

100 (5.2691 ± 0.0006) × 10−188 1.6 × 107 1.0000

150 (1.0535 ± 0.0002) × 10−332 4 × 106 1.0000

200 (3.818 ± 0.001) × 10−492 4 × 106 1.0000

300 (1.084 ± 0.001) × 10−841 2 × 106 1.0000

400 (9.863 ± 0.003) × 10−1221 4 × 106 1.0000

600 (3.645 ± 0.002) × 10−2040 106 1.0000

800 (1.326 ± 0.001) × 10−2918 2 × 106 1.0000

1000 (6.365 ± 0.003) × 10−3841 1.6 × 106 1.0000

1200 (3.262 ± 0.002) × 10−4798 1.2 × 106 1.0000

1400 (1.385 ± 0.001) × 10−5784 0.8 × 106 1.0000

1600 (7.4306 ± 0.0020) × 10−6796 4 × 106 1.0000
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For all n > 3 the literature results are based on Monte Carlo evaluation.

Cases n = 4 through n = 7. The most accurate literature results in this intermediate regime
are due to Calka [7], whose algorithm like ours fixed n in advance. Our results are fully
compatible with those of [7].
Cases n = 8 through n = 15. The Monte Carlo results obtained in the 1980s by Brakke [8]
for 3 � n � 16 have long remained unsurpassed. Our simulations confirm all of Brakke’s
results. Beyond n ≈ 10 the accuracy of the Monte Carlo algorithm of [8] rapidly goes down
with increasing n, and for n = 16 its error bars are as large as the result itself. This effect is
just due to the low relative frequency of cells of so many sides, the number n not being fixed
in this method. By contrast, the accuracy of our method, for a fixed amount of computer time
invested per value of n, stays roughly constant.

Case n � 16. Drouffe and Itzykson [9] developed a more powerful simulation method aimed
at simulating cells of larger sidedness. In their method, n is again fixed in advance. Their
accuracy amounts to roughly a single significant digit in the regime 16 � n � 25; for n � 25
the error becomes again of the order of pn itself. This error increase is due to attrition, i.e.
an increasing rejection rate of configurations that are generated but do not satisfy the required
geometrical constraints. From our data it appears that for n � 25 the authors [9] miss the true
values by an ever larger factor and that only their logarithmic order of magnitude is right5.
Again, the method of the present work maintains an error in the fifth digit, i.e. a relative error
not larger than 10−4.

Case of extremely large n. The range of n from 50 to 1600 had so far been an unexplored
territory. In this very large-n regime attrition is negligible and, for a constant calculational
effort per value of n, the method keeps producing results with an error only in the fourth
significant digit. The probabilities pn are extremely small. Numerically, we could easily
handle such small numbers by first factorizing out p(0)

n of which we computed and stored only
the logarithm. As discussed in subsection 3.1, the remaining factor Cn = 〈� e−V〉 has a finite
distribution and hence causes no underflow problems.

Generating the values of such ‘unphysically’ small probabilities is much more than a mere
technical achievement. First, it provides another check that the programme works correctly;
indeed we find that for n → ∞ the ratio pn/Cp(0)

n = Cn/C tends to unity as it should. Second,
it gives access to the large-n expansion of pn to be discussed in subsection 3.3. Thirdly and
most importantly, values of n this large are required to see the separation of length scales that
occurs in the many-sided cell; this is the subject of section 4.

Sum rules. The probabilities pn should obey certain sum rules. Upon summing pn of table 1
and writing Xn = ∑∞

n=3 Xnpn, we find

∞∑
n=3

pn = 1.000 010(15),

n = 6.0001(1),

n2 = 37.7816(7),

µ ≡ n2 − n2 = 1.7804,

(3.2)

with an error in µ at most equal to ±0.0015 but probably smaller due to partial cancellation
of the errors in n2 and n2. The first and second relations of (3.2) may be compared to the
exactly known values 1 and 6, respectively. The second moment n2 has an exact expression as

5 For a figure comparing their data to our asymptotic result, we refer to [3].
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Figure 3. To study the asymptotic large-n behaviour of the sidedness probability pn = Cnp
(0)
n , we

plot the quantity n(1 − Cn/C) where C = limn→∞ Cn (see equations (1.2) and (1.3)). The solid
line connects the data points. Data shown are in the range 3 � n � 300. The largest error bars
occur for small 1/n and are of the order of the data symbols. The intercept of the curve with the
vertical axis is the coefficient e1 of the leading correction term in the expansion of equation (3.3).

a double integral [14], which when evaluated numerically gives n2 = 37.780 811 . . . . Hence
µ = 1.780 811 . . . numerically exactly. We therefore see that, when their error bars are taken
into account, our Monte Carlo data are in excellent agreement with these sum rules.

Conclusion. The general conclusion of this subsection is that for low n (say n � 8), our
method is probably as good as several of the existing ones. If we did slightly outperform them
in that small n regime, that was only because of the length of our runs. However, for larger N
(say n � 8) our method has a decisive advantage over the existing ones.

3.3. Asymptotic behaviour of pn

On the basis of the numerical data, we will now discuss the asymptotic behaviour of pn

for n → ∞. Analytically it is known that pn = Cnp
(0)
n with p(0)

n given by equation (1.2)
and where the correction factor Cn may be obtained by a series expansion that classifies
contributions according to their power in n−1/2. On that basis, Hilhorst [3] fitted the limited
pn data available at that time (essentially n � 30) by a correction term proportional to n−1/2.
It remained possible, however, that the coefficient of the n−1/2 term would cancel, and indeed
Drouffe and Itzykson [9] had hypothesized earlier that the leading correction was of the order
n−1.

The numerical data of this work now indicate unambiguously that the series is actually
one in powers of n−1,

pn = C

4π2

(8π2)n

(2n)!

[
1 − e1

n
+

e2

n2
− e3

n3
+ · · ·

]
, (3.3)

where e1, e2, . . . , are numerical coefficients.
The factor in square brackets in equation (3.3) is equal to Cn/C, which for n → ∞ is

known to tend to unity. In figure 3, in order to find the corrections to the leading order term
in (3.3), we have plotted n(1 − Cn/C) = e1 − e2n

−1 + · · · against n−1. This figure shows
that the intercept with the vertical axis is located at e1 = 14.00 ± 0.05. We may now proceed
by subtracting this estimated value of e1 from the curve of figure 3, multiply it again by n
and look for a new intercept with the vertical axis which, if it is well defined, is equal to −e2.



New Monte Carlo method for planar Poisson–Voronoi cells 2625

Upon iterating until the statistical errors obscure a well-defined intercept, we obtained in this
way estimates for the first few ei . The uncertainties increase with the index i. We found

e1 = 14.00 ± 0.05, e2 = 94 ± 4, e3 = 375 ± 80, (3.4)

in which the errors are correlated: the values deviate together upward or downward. The
important conclusion is that pn has a series expansion in powers of n−1. The cancellation of
the half-integer powers in the expansion of [1] is no doubt due to a symmetry in the theory
that still remains to be identified.

In a final remark we wish to stress that finding this asymptotic expansion is different from
finding a ‘best fit’, which we do not attempt here. The curve of figure 3 is close to the sum
of a constant and an exponential in n−1, but we have no reason to believe that there exists a
simple analytical expression that fits all data within their error bars.

3.4. Perimeter and area

We have simulated the two cell properties that have received the greatest attention in the
literature, namely the cell perimeter P and the cell area A. We determined the average, the
second moment and the variance of both of these quantities as a function of n. The perimeter
results are summarized in table 2 and the area results in table 3.

Similar tables extracted from the literature were compiled by Okabe et al [2]. However,
by far the most accurate ones appear in an unpublished work by Brakke [8] and concern the
regime 3 � n � 16. All our area and perimeter data are compatible with those of [8], but
our error bars are strongly reduced. A further check on the numerical data is provided by two
more sum rules,

Pn = 4.000 035(65), An = 1.000 02(2), (3.5)

for which the exact values are 4 and 1, respectively.
We now turn to the large-n behaviour. Our data indicate the expansions

〈P 〉n = (πn)
1
2 + a 1

2
n− 1

2 + a 3
2
n− 3

2 + · · · ,
〈P 2〉n = πn + b0 + b1n

−1 + · · · ,
〈A〉n = 1

4n + c0 + c1n
−1 + · · · ,

〈A2〉n = (
1
4n

)2
+ d−1n + d0 + · · · ,

(3.6)

which again go down by integer powers of n. They imply that the variances have the series

〈P 2〉n − 〈P 〉2
n = b0 − 2π

1
2 a 1

2
+ · · ·

〈A2〉n − 〈A〉2
n = (

d−1 − 1
2c0

)
n + · · · .

(3.7)

The leading terms in each of the four series of equation (3.6) are known from theoretical
analysis [1, 3]. Heuristically they follow from the sole observation that in the large-n limit the
Voronoi cell becomes a circle of radius Rc = (n/4π)1/2. Theoretical analysis can in principle
also produce the higher order terms in (3.6), but this has not been attempted yet. Consequently,
the leading coefficients of the series in (3.7) are not known analytically. Here, our simulation
results provide answers.

In figure 4 we have plotted [〈δP 2〉n/π ]1/2 and 2[〈δA2〉n/n]1/2. The numerical data
strongly point to limit values equal to 1

2 for both quantities when n → ∞. Conjecturing that
these limits are exact, we then conclude that

b0 − 2π
1
2 a 1

2
= 1

4π, d−1 − 1
2c0 = 1

16 . (3.8)
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Table 2. Estimates of the average 〈P 〉n, the second moment 〈P 2〉n and the root-mean-square
fluctuation 〈δP 2〉1/2

n of the cell perimeter P. The numbers in parentheses represent the standard
deviation in the last digit. The entries of the third column have an error of at most one unit in their
last digit. The limit value 1

2 π1/2 = 0.886 226 . . . for n = ∞ has the status of a conjecture.

n 〈P 〉n 〈P 2〉n 〈δP 2〉1/2
n

3 2.740 296 (2) 8.171 30 (2) 0.813 68
4 3.219 524 (3) 11.048 19 (2) 0.826 34
5 3.642 658 (3) 13.966 26 (3) 0.835 04
6 4.026 307 (4) 16.919 58 (4) 0.841 69
7 4.380 000 (6) 19.902 72 (6) 0.847 02
8 4.710 196 (8) 22.910 84 (8) 0.851 40
9 5.020 869 (12) 25.940 26 (12) 0.855 06

10 5.315 211 (11) 28.987 90 (12) 0.858 16
11 5.595 488 (10) 32.050 43 (12) 0.860 78
12 5.863 536 (11) 35.125 88 (13) 0.863 04
13 6.120 72 (2) 38.2114 (2) 0.864 97
14 6.368 24 (1) 41.3055 (2) 0.866 64
15 6.607 05 (2) 44.4066 (2) 0.868 09
16 6.837 97 (2) 47.5136 (3) 0.869 36
17 7.061 73 (2) 50.6258 (2) 0.870 47
18 7.278 84 (2) 53.7410 (3) 0.871 45
19 7.489 92 (2) 56.8598 (3) 0.872 33
20 7.695 44 (1) 59.9820 (3) 0.873 10
21 7.895 76 (3) 63.1066 (4) 0.873 80
22 8.091 18 (3) 66.2318 (5) 0.874 42
23 8.282 15 (2) 69.3596 (3) 0.874 99
24 8.468 92 (3) 72.4890 (4) 0.875 51
25 8.651 71 (2) 75.6198 (4) 0.875 98
30 9.513 79 (2) 91.2825 (5) 0.877 83
40 11.039 71 (1) 122.6501 (4) 0.880 05
50 12.379 83 (2) 154.0370 (5) 0.881 35
60 13.588 87 (3) 185.4355 (7) 0.882 19
70 14.698 96 (2) 216.8384 (6) 0.882 79
80 15.731 05 (2) 248.2460 (7) 0.883 23
90 16.699 51 (3) 279.6545 (8) 0.883 57

100 17.614 87 (2) 311.0645 (8) 0.883 84
150 21.618 17 (3) 468.1280 (12) 0.884 65
200 24.988 33 (3) 625.1998 (11) 0.885 05
300 30.636 07 (2) 939.3527 (12) 0.885 44
400 35.393 84 (2) 1253.5092 (13) 0.885 64
600 43.370 90 (4) 1881.820 (3) 0.885 84
800 50.093 46 (2) 2510.143 (2) 0.885 93

1000 56.014 90 (1) 3138.456 (2) 0.885 99
1200 61.367 64 (1) 3766.773 (2) 0.886 03
1400 66.289 53 (2) 4395.087 (4) 0.886 06
1600 70.870 47 (2) 5023.408 (2) 0.886 08
∞ 0.886 226 . . .

Analysis of the 〈P 2〉n data to next order suggests that 〈P 2〉n/(πn)− 1 tends to −1 as n → ∞.
Conjecturing that this, too, is exact and combining it with the first one of equations (3.8) we
arrive at

a 1
2

= − 5
8π

1
2 , b0 = −π. (3.9)
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Table 3. Estimates of the average 〈A〉n, the second moment 〈A2〉n and the normalized root-mean-
square fluctuation n−1/2〈δA2〉1/2

n of the cell area A. The numbers in parentheses represent the
standard deviation in the last digit. The entries of the third column have an error of at most one
unit in their last digit. The limit value 1

4 for n = ∞ has the status of a conjecture.

n 〈A〉n 〈A2〉n n−1/2〈δA2〉1/2
n

3 0.343 087 (3) 0.161 573 (3) 0.120 92
4 0.558 052 (4) 0.401 285 (5) 0.149 89
5 0.774 080 (4) 0.736 75 (1) 0.165 86
6 0.995 789 (5) 1.179 53 (2) 0.176 98
7 1.222 51 (1) 1.735 16 (3) 0.185 41
8 1.453 28 (1) 2.407 24 (3) 0.192 00
9 1.687 36 (1) 3.198 47 (4) 0.197 56

10 1.924 08 (2) 4.110 64 (7) 0.202 13
11 2.162 95 (2) 5.1451 (1) 0.205 99
12 2.403 66 (2) 6.3033 (1) 0.209 29
13 2.645 78 (2) 7.5854 (1) 0.212 17
14 2.889 06 (3) 8.9920 (1) 0.214 69
15 3.133 31 (3) 10.5234 (1) 0.216 89
16 3.378 35 (3) 12.1797 (2) 0.218 85
17 3.624 16 (2) 13.9619 (2) 0.220 59
18 3.870 34 (3) 15.8680 (2) 0.222 15
19 4.117 03 (3) 17.8996 (3) 0.223 57
20 4.364 15 (3) 20.0570 (3) 0.224 84
21 4.611 58 (4) 22.3394 (3) 0.226 01
22 4.859 23 (4) 24.7464 (4) 0.227 06
23 5.107 15 (4) 27.2790 (4) 0.228 03
24 5.355 31 (5) 29.9371 (5) 0.228 91
25 5.603 58 (6) 32.7198 (6) 0.229 74
30 6.846 86 (6) 48.5090 (6) 0.233 06
40 9.339 13 (4) 89.470 (1) 0.237 23
50 11.834 58 (7) 142.932 (2) 0.239 77
60 14.331 83 (6) 208.900 (2) 0.241 46
70 16.829 79 (6) 287.363 (3) 0.242 67
80 19.3283 (1) 378.331 (4) 0.243 58
90 21.827 26 (8) 481.800 (4) 0.244 29

100 24.326 27 (6) 597.763 (3) 0.244 85
150 36.8236 (2) 1365.10 (1) 0.246 58
200 49.3224 (1) 2444.94 (1) 0.247 42
300 74.3214 (2) 5542.16 (3) 0.248 26
400 99.3206 (1) 9889.33 (3) 0.248 71
600 149.3196 (3) 22 333.58 (1) 0.249 14
800 199.3201 (2) 39 778.23 (6) 0.249 35

1000 249.3192 (2) 62 222.3 (1) 0.249 48
1200 299.3193 (2) 89 666.7 (1) 0.249 57
1400 349.3187 (3) 122 110.8 (2) 0.24963
1600 399.3190 (2) 159 555.4 (2) 0.249 68
∞ 0.250 000 . . .

We do not attempt, however, a similar analytical conjecture for the second pair of coefficients,
c0 and d−1, nor will we pursue estimates for the higher order coefficients in the series (3.6)
and (3.7), except below in connection with Lewis’ law.
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Figure 4. The asymptotic large-n behaviour of the root-mean-square fluctuations 〈δP 2〉1/2
n and

〈δA2〉1/2
n of the perimeter and the area, respectively, of the n-sided cell. Data shown are in the

range 50 � n � 1600. The error bars are smaller than the data points. The two curves that connect
the data points are asymptotically straight lines which for n → ∞ both appear to converge 1

2 .

Lewis’ celebrated law [15] is an empirical statement about one of the cell’s most
conspicuous properties, namely the relation between its area and its number of sides. The law
states that the average area 〈A〉n of an n-sided cell increases with n as

〈A〉n = a0

λ
(n − n0), (3.10)

where a0 and n0 are constants and where we have displayed again the dependence on the areal
particle density λ. Sometimes (see the discussion in [2]) this law is written in a more restricted
one-parameter form

〈A〉n = b(n − 6) − 1

λ
. (3.11)

It is found, however, that 〈A〉n deviates from linearity with n in simulations of Poisson–Voronoi
diagrams as well as in the data from most experimental systems. We now look at what the
asymptotic analysis has to say.

In [1, 3] we proved that asymptotically

〈A〉n � πR2
c = n

4λ
, n → ∞, (3.12)

and this result has been incorporated in the series for 〈A〉n in (3.6). A coefficient a0 ≈ 1
4

had since long been suspected by various authors [9, 16, 17]. Going now beyond (3.12) and
proceeding in the same way as for pn, we can determine the coefficients of the series of (3.6)
for 〈A〉n on the basis of our simulation results of table 2. This yields

c0 = −0.6815(5), c1 = 0.750(5), c2 = 3.15(10). (3.13)

We now consider the laws (3.10) and (3.11). The fact that we found c1, c2, . . . to be
nonvanishing confirms once more that 〈A〉n is not strictly linear in n. From the above it
follows that in (3.10) one should choose

n0 = −4c0 = 2.7260(4) (3.14)

if one wishes it to correctly represent the asymptotic behaviour of 〈A〉n for Poisson–Voronoi
cells. This is of course different from finding a best fit to a limited set of 〈A〉n data in a
restricted n interval. If that is the purpose, the values of a0 and n0 will depend on the available
data and on the way the fit is carried out. The one-parameter law (3.11) postulates a relation
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between a0 and n0 that is violated in the asymptotic expansion. Hence (3.11) cannot be used
to describe the large-n behaviour of 〈A〉n and merely has the status of an empirical fit to the
data, the value of b again depending on the data set and on how the fit is done.

4. Characteristic cell shapes

It has been established [1, 3] that in the large-n limit, the Voronoi cell tends to a disc of radius
Rc = (n/4π)1/2.6 In [1] it was furthermore shown that the cell perimeter undergoes ‘elastic’
deformations from circularity, the elasticity being, of course, of an entropic origin. The
probability law of these deformations was given in the large-n limit. In this section we show
how our Monte Carlo method allows us what was hitherto impossible, namely to simulate for
any finite n the detailed statistics of the cell shape.

We Monte Carlo generated cells of prescribed sidedness n in a ‘natural’, that is, an
unbiased, environment. This was done as follows. For a given n the cell angles (ξ, η) were
drawn randomly, and β∗ was found according to the rules of section 2.3. The cell radius was
taken equal to its most probable value Rc = (n/4π)1/2 and the cell boundary was constructed.
This boundary, together with the position of the central particle, fixes the positions of the n
first-neighbour particles. We then determined the cell’s fundamental domain F , that is, the
union of the n discs of radius Sm centred at the vertices Sm. The complement of F in a
large rectangle of suitable size was subsequently filled randomly with particles of a uniform
density equal to 1. The particles added by this procedure are all necessarily second or higher
order neighbours of the central one. The Voronoi construction was finally applied to the full
collection of particles to complete the Voronoi cell diagram.

4.1. Cells of n = 24, 48 and 96 sides

We have generated typical cell shapes for a sequence of values of n, starting with n = 3 and
doubling n each time. Figures 5–7, in which the dots represent the particles, show the results
for cells of n = 24, 48 and 96 neighbours. The three pictures are at different scales, but all
have unit particle density. This picture sequence illustrates the tendencies that characterize
many-sided cells. One tendency is for the first neighbour cells to be elongated. This feature
is apparent already for n = 24 and becomes very pronounced for n = 48, whereas the n = 96
cell has only very elongated neighbours. The same phenomenon was observed by Lauritsen
et al [17], but in a different system. These authors consider Poisson–Voronoi diagrams to
which they assign an ‘energy’ that favours many-sided cells. Snapshots of their configurations
show a dense structure of many-sided cells (of sidednesses higher than n = 60) separated by
mostly four-sided elongated cells. Their procedure does not, however, provide estimates for
pn in an unbiased Poisson–Voronoi diagram.

Another tendency, similarly appearing in [17], is for the first-neighbour particles to align
on what tends towards a continuous curve. Whereas for n = 24 some imagination is still
needed to see this curve, it becomes clearly distinguishable for n = 48 and is immediately
obvious to the eye for n = 96. The typical distance between nearest neighbour particles along
this curve decreases as 2π(2Rc)/n ∼ n−1/2. We note that whereas Voronoi cells are always
convex, the ‘curve’ connecting the first neighbours need not enclose a convex area; in each of
the figures 5–7, there are small but clearly distinguishable deviations from convexity.

6 The approach of a Voronoi cell to a disc has been rigorously proved [18–20] under the condition of the cell becoming
large (e.g., by letting its area tend to infinity), rather than many-sided (n → ∞). The two conditions lead to distinctly
different statistical ensembles.
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Figure 5. A typical Voronoi cell with n = 24 neighbours. The dots represent the particles.
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Figure 6. A typical Voronoi cell with n = 48 neighbours.

Figure 8 enlarges a detail of figure 7 and shows a collection of first-neighbour cells. All
first neighbours fully visible in the figure are four-sided except those marked A,B,D,E,
which are five-sided, and the cell C, which is either five- or six-sided (this depends on how the
two almost coinciding three-vertices are arranged at the point marked ‘2V’; a higher resolution
is needed to decide this question). Figure 8 illustrates that in the large-n limit four-sided first
neighbours become dominant. In [4] it was argued that five-sided cells constitute a fraction
only of order n−1/2 of all first-neighbour cells, and that the probability of six- and higher-sided
first neighbours is still of higher order in n−1/2. In figure 8 the cell marked P is a second
neighbour to the central cell. The boundary separating it from the first neighbours has been
shown as a heavy solid line on which we will further comment shortly.

4.2. Very large cells

Focusing now on very large n, we show in figure 9 a central particle located in the origin and
having 1536 neighbours. As before, the dots represent the particles. The inner contour, which
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Figure 7. A typical Voronoi cell with n = 96 neighbours. The region inside the box is shown
enlarged in figure 8.
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2V

Figure 8. Enlargement of the box in figure 7, showing some of the strongly elongated first
neighbours of the central cell. Among the first neighbours fully visible, cells A, B, C, D and E
have more than four sides. The arrow marked ‘2V’ points to two three-vertices that coincide within
the resolution of the figure. Cell P is a second neighbour whose boundary with the first neighbours
(heavy lines) is an example of an ‘incipient parabola segment’ (see the text).

is nearly indistinguishable from a circle of radius Rc, represents the boundary of the Voronoi
cell of the central particle. The outer ‘curve’, which is also very close to circular but of radius
2Rc, represents the alignment of the 1536 first-neighbour particles. Their high line density
gives the impression of a continuous curve. Cell boundaries other than those of the central
cell have not been drawn; they would totally blacken the empty annular region between the
boundary of the central cell and its first-neighbour particles.

The boxed region in figure 9 is shown enlarged in figure 10, where we did draw all Voronoi
cell boundaries. The extreme elongation of the first-neighbour cells is what first strikes the
eye. The discrete structure of the ‘curve’ of first neighbours is also apparent now. The
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Figure 9. Approach to the infinite n limit. The origin is occupied by a particle whose Voronoi cell
has n = 1536 sides. The almost circular inner curve is the cell boundary of the central cell. The
other cell boundaries have not been drawn. The almost circular outer curve is made up of 1536
first-neighbour particles. The region inside the box is shown enlarged in figure 10.

Figure 10. Enlargement of the box in figure 9, where now all cell boundaries have been drawn.
The discrete structure of the outer ‘curve’ of figure 9 has become visible here.

distances 	m between successive first-neighbour particles along this curve are of order n−1/2.
More precisely, if we set 	m = λm(4π/n)1/2, then the theory [1] implies that for n → ∞
the qualities λm are independent identically distributed random variables of probability law
λm exp(−λm). Random deviations from a local straight line are too small to be discernible to
the eye; they may be argued [21] to decrease as n−3/2, which is also the order of magnitude of
the systematic deviations due to the radius of curvature 2Rc. The large cell and its environment
are characterized, therefore, by four different length scales, each varying with its own power
of n. They have been summarized in table 4. One has to go to n values as high as we did in
order for the separation of scales to become clearly visible.
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Table 4. Four length scales characterizing the n-sided Voronoi cell in the large-n limit; see
figures 9 and 10.

Scale Length

n1/2 Cell radius
n0 Typical interparticle distance outside the first-neighbour circle
n−1/2 Typical distance between successive first-neighbour particles
n−3/2 Random deviations of first neighbours from full alignment

Very large n is also still required for another feature to become apparent. In figure 10
the boundary between a second-neighbour cell and its adjacent first-neighbour cells is, by
construction, composed of points equidistant to the second-neighbour particle and the almost
continuous straight line of first-neighbour particles. But such a boundary is a parabola. Hence,
in the limit n → ∞ the boundary separating the set of first from the set of second-neighbour
cells is piecewise parabolic. Indeed, with this observation in mind one now recognizes the
boundary segment of cell P in figure 8 (heavy solid line), and others in that same figure, as
‘incipient parabolic’. Such knowledge was at the basis of the theory of two-cell correlations
exposed in [4]. There, laws discovered in the n → ∞ limit were extrapolated backward and
shown to be relevant for finite n. It was shown, in particular, that Aboav’s linear relationship
[2, 12] between n and the total average sidedness nmn of the neighbours of an n-sided cell
cannot hold in Poisson–Voronoi diagrams. We expect that in the future the study of large cells
will shed further light also on various issues relevant for the finite n behaviour.

5. Summary and conclusion

In this paper we have developed a new Monte Carlo method for evaluating the sidedness
probability pn for arbitrary n. The method, which is constructed on the basis of an extension
of earlier theory [1, 3], is not difficult to implement once the rather complicated analytic
expressions that intervene are available.

We have determined pn as well as the first and second moments of the n dependent cell
perimeter and cell area. A full agreement is obtained with earlier results for pn due to Hayen
and Quine [6], Calka [7] and Brakke [8], whose data extend up to n = 16. For n � 10 we have
reduced the error bars on pn very considerably. In the range up to n = 50, we improved and
corrected the pn data due to Drouffe and Itzykson [9]. For 50 < n � 1600, we obtained data
in a range that had so far remained inaccessible. This enabled us to investigate the asymptotic
large-n behaviour of pn and of the perimeter and area moments. On the basis of our numerical
results we conclude that they all have asymptotic series in entire powers of n−1, possibly up
to an overall prefactor n

1
2 .

Exploiting our full control of the cell statistics, we have exhibited occurrences of extremely
rare many-sided cells in a typical environment of ordinary cells. Their embedding involves
four distinct length scales, varying with four different powers of n. This has confirmed, among
several other things, the very elongated shape of the first-neighbour cells.

No particular effort was made to optimize the code. Our total investment of computer
time on a recent PC model was limited to a few hundred hours and allowed us to obtain pn to
at least four or five significant decimals for the set of n values listed in the tables. We have
also not attempted to provide any ‘best fits’ to the numerical curves, as we have no reason to
believe that there exist simple analytic expressions that fit the data within our error bars over
their full range.
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The Monte Carlo work of this paper became possible only after initial analytic progress
[1, 3]. We believe that it will in return spur further analytic investigation. One branch of
study may concern the nature of the asymptotic expansions uncovered here. Another one may
deal with correlations between a cell and its second, third and higher topological neighbours,
which are a recurrent theme in the theory and applications of Voronoi cells.
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Appendix A. Theory

We present here the extension of an earlier work that opens the way to the numerical
simulations of this work. We consider uniformly and independently distributed particles
in the plane. Let a particle be placed in the origin and let n other particles occupy the positions
2R1, 2R2, . . . , 2Rn. The sidedness probability pn of the cell containing the origin may then
be written as a 2n-fold integral on the midpoint coordinates [7, 9, 10, 13],

pn = 1

n!

∫
dR1 . . . dRnχ(R1, . . . , Rn) e−A(R1,...,Rn). (A.1)

Here the indicator function χ is equal to unity (or to zero) on the domain of phase space
where the perpendicular bisectors of the vectors 2Rm, for m = 1, 2, . . . , n, define an n-sided
(or a fewer-sided) cell around the origin, and A is the two-dimensional volume of the area
that should be void of particles if this cell is not to be intersected by any of the bisectors of
the position vectors of the remaining particles. Explicit expressions for A and χ are given
in [1, 7].

A.1. Starting point

After one integrates over a common radial scale, expression (A.1) takes the form [1] of an
integral on the angle β1 and on the sets of angles ξ = {ξm} and η = {ηm},

pn = (n − 1)!

2n

∫ π/2

−π/2
dβ1

∫
dξ dηδ

(
n∑

m=1

ξm − 2π

)
δ

(
n∑

m=1

ηm − 2π

)

× δ(β1 − β∗)
G′(ξ, η;β∗)

[
n∏

m=1

ρ2
mTm

]
[π(1 + n−1V )]−n, (A.2)

where G and β∗ are as defined in the main text (equations (2.2) and (2.1)) and the derivative
G′ = dG/dβ1 is given explicitly by (B.8) and (B.4) of appendix B. The definitions of the new
symbols occurring in (A.2) follow below.

First of all, the symbol
∫

dξ dη in (A.2) is shorthand for the nested integrations∫
dξ dη =

∫ π/2+β1

0
dξ1

∫ π/2+γ1

0
dη1

∫ π/2+β2

0
dξ2

. . .

∫ π/2+γ
n−1

0
dηn−1

∫ π/2+βn

0
dξn

∫ 2π

0
dηn. (A.3)
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The notation is hybrid; the variables γ1, β2, γ3, . . . , βn occurring here should be viewed as
functions of ξ , η and the ‘angle of rotation’ β1. They are given by

βm = β∗(ξ, η) −
m−1∑
	=1

(ξ	 − η	),

γm = −β∗(ξ, η) +
m−1∑
	=1

(ξ	 − η	) + ξm, m = 1, . . . , n,

(A.4)

where
∑0

	=1 denotes an empty sum. Next, Tm and ρm are functions of γm and βm given by

Tm = sin(βm + γm)

cos2 βm

, m = 1, . . . , n, (A.5)

ρm = cos γm cos γm−1 . . . cos γ1

cos βm cos βm−1 . . . cos β1
ρn, m = 1, . . . , n − 1, (A.6)

and the condition

n−1
n∑

m=1

ρm = 1. (A.7)

Finally, V is given by

V = n

4π

n∑
m=1

ρ2
m[tan γm − γm + tan βm+1 − βm+1 + γm tan2 γm + βm+1 tan2 βm+1]

+
n

2π

n∑
m=1

(
ρ2

m − 1
)
(γm + βm+1). (A.8)

The factor n included in its definition makes that, typically, V is of order n0 as n → ∞. This
completes the definition of the multiple integral (A.2) for pn.

A.2. Transformations

We now depart from the development of [1] and transform expression (A.2) as follows. We
integrate over β1 and henceforth when writing β1 it will be understood that it takes the value
β1 = β∗(ξ, η). The integration requires that equation (2.1) has a solution. In [1] a unique
solution was shown to exist perturbatively for large n; in appendix B of the present work we
provide the demonstration for general n. We furthermore replace the upper integration limits
of the integrals over ξm and ηm by ∞ at the expense of introducing Heaviside theta functions.
Using that ξm − βm = γm and ηm − γm = βm+1 and introducing a factor θ

(
π
2 − β1

)
, which

may be done for free, we find that equation (A.2) may be converted into

pn = (n − 1)!

2nπn

∫ ∞

0
dξ1 ξ1 . . . dξn ξn

∫ ∞

0
dη1 . . . dηn

× δ

(
n∑

m=1

ξm − 2π

)
δ

(
n∑

m=1

ηm − 2π

)
� e−V, (A.9)

in which

e−V = G′(ξ, η;β∗)−1

[
n∏

m=1

ρ2
mTmξ−1

m

]
(1 + n−1V )−n (A.10)
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and

� =
n∏

m=1

θ
(π

2
− βm

) n∏
m=1

θ
(π

2
− γm

)
. (A.11)

Expression (A.9) is more symmetric than (A.2)–(A.3). Its integrand is a function exclusively
of ξm and ηm. We have purposefully included extra weights ξm in the integrations in (A.9) and
compensated for these by factors ξ−1

m in the product on m in (A.10). In this way we obtain the
property that Tmξm remains finite when ξm → 0, which was desirable analytically [1, 3] and
is also necessary numerically.

The same quantity V as defined in (A.10) was studied analytically in [1, 3], where it was
shown that for n → ∞ it remains, typically, of order n0.

One further rewriting is useful. We set

ξm = α2m−1 + α2m, m = 1, 2, . . . , n, (A.12)

and use that ∫ ∞

0
dα2m−1 dα2mf (α2m−1 + α2m) =

∫ ∞

0
dξm ξmf (ξm) (A.13)

for any function f (ξm). This converts (A.9) into the final result

pn = p(0)
n 〈� e−V〉, (A.14)

where for any function X of the angular variables the average 〈X〉 is defined by

〈X〉 = N
∫ ∞

0
dα1 . . . dα2n

∫ ∞

0
dη1 . . . dηnδ

(
2n∑

m=1

αm − 2π

)
δ

(
n∑

m=1

ηm − 2π

)
X, (A.15)

where N = (n−1)!
/[

2nπnp(0)
n

]
. The factor p(0)

n extracted from the right-hand side of (A.14)
is easily calculated as

p(0)
n = (n − 1)!

2nπn

[∫ ∞

0
dα1 . . . dα2nδ

(
2n∑

m=1

αm − 2π

)] [∫ ∞

0
dη1 . . . dηnδ

(
n∑

m=1

ηm − 2π

)]

= (n − 1)!

2nπn
× (2π)2n−1

(2n − 1)!
× (2π)n−1

(n − 1)!

= (8π2)n

4π2(2n)!
, (A.16)

which is (1.2). This way of arriving at p(0)
n is slightly simpler than the original calculation of

[1]. Expressions (A.14)–(A.15) are new and are at the basis of the Monte Carlo simulation
of this work. The integrals in (A.15) directly suggest step (i) of the algorithm of subsection
(2.3).

Appendix B. The equation G = 0

We discuss here the function G defined by

e2πG = cos γ1 cos γ2 . . . cos γn

cos β1 cos β2 . . . cos βn

. (B.1)

The transformation to angular variables in appendix A led to equation (A.11), i.e. to the upper
limits of integration βm, γm < π

2 . Since βm + γm = ξm and since ξm > 0, we have in fact that
in the integral for pn the angles βm and γm are restricted by

− π

2
< βm, γm <

π

2
. (B.2)
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Hence G → −∞ whenever any angle γm tends to ±π
2 , and G → ∞ whenever any βm tends

to ±π
2 . We now set

βm = β̃m + β1,

γm = γ̃m − β1, m = 1, . . . , n,
(B.3)

where β̃m and γ̃m are functions of ξm and ηm that may be read off by a comparison of equations
(B.3) and (A.4), respectively,

β̃m = −
m−1∑
	=1

(ξ	 − η	),

γ̃m =
m−1∑
	=1

(ξ	 − η	) + ξm, m = 1, . . . , n,

(B.4)

where again
∑0

	=1 denotes the empty sum. Making all β1 dependence explicit, we get

e2πG = cos(γ̃1 − β1) cos(γ̃2 − β1) . . . cos(γ̃n − β1)

cos(β̃1 + β1) cos(β̃2 + β1) . . . cos(β̃n + β1)
, (B.5)

which we wish to study as a function of the single variable β1, at fixed (ξ, η).
Expression (B.5) shows that exp(2πG) is positive on the interval

− π

2
+ max

1�m�n
γ̃m < β1 <

π

2
− max

1�m�n
β̃m, (B.6)

provided this interval is not empty, that is, provided

max
1�m�n

γ̃m + max
1�m�n

β̃m < π. (B.7)

Because of the preceding discussion, G approaches −∞ and ∞ as β1 approaches the left and
right hand end points of this interval, respectively. To show that G is actually monotonous in
β1 on the interval (B.6), it suffices to analyse the derivative

dG

dβ1
= 1

2π

n∑
m=1

[tan(γ̃m − β1) + tan(β̃m + β1)]. (B.8)

Since β̃m + γ̃m = ξm > 0, it follows that there are three cases, namely (i) β̃m, γ̃m > 0;
(ii) β̃m > 0, γ̃m < 0 and (iii) β̃m < 0, γ̃m > 0. By considering each of them separately, one
deduces that the summand in equation (B.8) is always positive. It follows that dG/dβ1 > 0
and hence that G = 0 has a unique solution β1 = β∗(ξ, η) in the interval (B.6).

Hence we have shown that the conditions ξm, ηm > 0 and βm, γm < π
2 suffice for the

equation G = 0 to have a unique solution β∗ in the physical interval (B.6). This condition
involves, however, the angles βm and γm which are determined by the solution β∗. We would
like to have a criterion for the existence of a solution in terms of the sole sets (ξ, η) given at
the outset. By retracking the solution method, we see that it is valid for all (ξ, η) as long as
the ‘physical’ interval (B.6) is not empty, that is, as long as equation (B.7) is satisfied. When
made explicit with the aid of (B.4), equation (B.7) becomes condition (2.3) of the main text.
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